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Final Report

Low Complexity Track Initialization and Fusion for Multi-modal Sensor
Networks

Principal Investigator: Dr. Qiang Le
Hampton University

The objective of the project is to undertake research and development in the area of wireless sensor
networks to provide an effective and affordable solution in support increasing requirements for
reconnaissance and surveillance. A wireless sensor network, such as unattended ground sensors (UGS)
network represents a set of inexpensive sensors of various types (modes) that provide an effective and
affordable solution for battlefield surveillance. For example, acoustic sensors could obtain bearing angles
of targets, and proximity sensors report the presence or absence of targets within their sensing ranges. The
ultimate goal of this research is to explore fundamental performance bounds that determine how well a
sensor network can resolve and localize multiple targets as a function of the operating parameters such as
sensor density, the threshold settings, and the spacing between the targets. The major contribution of this
project is the development of the particle-based probability density (PHD) filter for binary measurements
using proximity sensors.

This three year works is summarized in six publications: Aerospace 2010 [1] and Fusion 2010[2]. Army
Science 2010[3], Aerospace 2011 [4], SPIE 2011[5], and TAES 2012[6].

The Aerospace 2010 works presents the maximum likelihood localization (ML) algorithm for multi-target
localization using proximity-based sensor networks. Proximity sensors simply report a single binary value
indicating whether or not a target is near. The ML approach requires a hill climbing algorithm to find the
peak, and its ability to find the global peak is determined by the initial estimates for the target locations.
This paper investigates three methods to initialize the ML algorithm: 1) centroid of k-means clustering, 2)
centroid of clique clustering, and 3) peak in the 1-target likelihood surface. To provide a performance
bound for the initialization methods, the paper also considers the ground truth target positions as initial
estimates. Simulations compare the ability of these methods to resolve and localize two targets. The
simulations demonstrate that the clique clustering technique outperforms k-means clustering and is nearly
as effective as the 1-target likelihood peak methods at a fraction of the computational cost.

The Fusion 2010 works documents our initial attempt to determine the operating parameters of a
proximity sensor network to achieve a specified probability of resolution at a specified target separation
Is. The probability of resolution is derived by considering three necessary conditions to resolve two
targets. These conditions consist of 1) node proximity to the targets, 2) sufficient number of detections
from nodes close to the target, and 3) the existence of the “between" node that cannot detect either target.
These conditions lead to a design strategy that determines the necessary sensor density and threshold
settings to achieve the desired P, for a given rs. Simulations demonstrate that at the designed sensor
density and threshold values, the actual percentage of targets resolved achieves the desirable level of
resolution for moderate to large target separations.

Army Science 2010work documents our initial investigations on multiple target tracking filters in
proximity sensor networks. To this end, we implement a PHD filter and compare it to a clairvoyant PF
filter. During the measurement update, the filters do not associate targets with the binary measurements
due to the fact that the response of a binary sensor is intertwined with the location of all targets. The
simulations that compare the PHD to clairvoyant processing demonstrate the feasibility of the PHD to
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both estimate the number of targets as well as estimate their target states. One useful feature of the PHD
filter is that it considers various combinations of PHD particles when performing the measurement
update. The advantage of this feature was demonstrated via the simulations.

Aerospace 2011work further documents our investigation of multiple target tracking filters in proximity
sensor networks. To this end, we implemented a particle-based PHD filter and compared it to
ClusterTrack, a clustering-based particle filter. The simulations that compare the PHD to the ClusterTrack
method demonstrate the advantages of PHD method. For the 2-D tracking case, the localization accuracy
of the PHD is far better than that of the ClusterTrack. Unlike ClusterTrack, the PHD is able to estimate
the number of targets. The advantages of the PHD may be due to the fact that it is based principled
Bayesian approach; whereas the ClusterTrack is more ad-hoc in its design.

This SPIE 2011 work investigates how the sensor density, sensing range, and target separation affect the
ability of the PHD filter to estimate the number of targets in the scene and to localize these targets (as
measured by four different metrics). Two possible measurement models are considered. The disc model
assumes target detection within a sensing radius, and the probabilistic model assumes 1/r? propagation
decay of the source signal so that the probability of detection decreases with range r. The simulations
demonstrate the simplistic disc model is inadequate for the PHD filter to estimate the number of targets,
and the filter for the disc model exhibits difficulty to localize widely separated targets for low sensor
densities. On the other hand, the more realistic probabilistic model leads to a PHD filter that can
accurately estimate the number and locations of targets even for small target separations.

The TAES 2012 work documents our investigation of multiple target tracking filters in proximity sensor
networks. To this end, we developed a novel formulation of the PHD filter for proximity sensors. We
compared the PHD against two clairvoyant filters that assume the number of targets is known a priori. For
measuring the localization errors, we considered a measure that attempts to separate out the effects of
cardinality errors. The simulations show the advantages of the crossover feature in the PHD.

Two possible measurement models were considered: the disc and probabilistic, so that two model
matching cases and two model mismatching cases were considered. While the disc model has wide
appeal, the probabilistic model better represents the phenomenology that dictates how sensors respond to
target signals. The simulations demonstrate that the PHD filter would be unable to accurately estimate the
number of targets if the disc model was assumed in the measurement update. This is the case because the
hypothesis that explains the pattern of detection reports is not unique. On the other hand, the PHD is
accurate when using the probabilistic model in the measurement update because of the uniqueness of the
best hypothesis to explain the pattern of detection reports.

The unique hypothesis emerges because it is assumed that the radiating power of each target is a fixed and
known quantity. In reality, one would expect that this power fluctuates from target to target. If these
fluctuations are unbounded, the probabilistic model becomes completely ambiguous, and it would be
impossible for the PHD filter to accurately estimate the number of objects in the scene. However, we
expect that these fluctuations are bounded. Future work will investigate how allowing for bounded spread
of target power levels will affect the performance of the PHD filter. Other future work will investigate
better dynamical models to improve the tracking performance including target motion and birth/death
models, and other cluster methods for closely spaced targets.
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Finally, the new PHD filter in this paper uses a profoundly different measurement model than the
traditional PHD filter. When the sensor measurements are statistically independent conditioned on the
target hypothesis as in this paper, the multisensor version of the PHD is straightforward. However, for the
traditional PHD filter, the “exact” multisensor version is very cumbersome to implement. Usually,
approximations are incorporated in the multisensor implementation of the traditional PHD. These
approximations are necessary due to the constraints that a measurement corresponds either to one unique
target or clutter. Actually, the measurements are usually derived from raw signals through signal
processing, e.g., direction of arrival estimation. As an alternative, the new PHD method could easily be
modified to consider the likelihood of raw signals given the target hypotheses. The new PHD method
does suffer from approximations in the particle implementation of the multiobject target density. On the
other hand, approximations of the PHD for sensor fusion also lead to performance loss. Future work can
investigate whether the new PHD method operating over raw signals from multiple sensors has utility
compared to multiple sensor implementation of the traditional PHD method.

Since FY2010 and FY2011 annual reports already include Aerospace 2010 [1] and Fusion 2010[2]. Army
Science 2010[3], Aerospace 2011 [4], SPIE 2011[5] as attachments. In this final report, only TAES [12]
is included as attachment.

Publications

1. Q. Leand L.M. Kaplan, “Target localization using proximity binary sensors,” Proceedings of IEEE
Aerospace conference, Big Sky, MT, Mar. 2010.

2. Q. Le, and L.M. Kaplan, “Design of Operation Parameters to resolve Two Targets using Proximity
Binary Sensors ” in 13th International Conference on Information Fusion, July, 2010, Edinburgh,
UK.

3. Q. Le,and L. M. Kaplan, “Multitarget Tracking using Proximity Sensors,” Proceedings of Army
Science Conference, Orlando, FL, Nov. 2010.

4. Q. Le, and L. M. Kaplan, “Target Tracking using Proximity Binary Sensors,” Proceedings of IEEE
Aerospace Conference, Big Sky, MT, Mar. 2011.

5. Q. Le, and L. M. Kaplan, “Effects of Operation Parameters on Multitarget Tracking in Proximity
Sensor Networks,” Proceedings of SPIE Conference, Orlando, FL, April, 2011.

6. Q.Le, and L.M.Kaplan, “Probability Hypothesis Density-Based Multitarget Tracking using
Proximity Sensors,” accepted by IEEE Transaction on Aerospace and Electronics Systems in Sept.
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Probability Hypothesis Density-Based Multitarget
Tracking for Proximity Sensor Networks

Qiang Le and Lance M. Kaplan

Abstract—This paper investigates the feasibility of a mesh
network of proximity sensors to track targets. In such a network,
the sensors report binary detection/nondetection measurements
for the targets within proximity. This work proposes a new
probability hypothesis density (PHD) filter and its particle
implementation for multiple target tracking in a proximity sensor
network. The performance and robustness of the new method is
evaluated over simulated matching and mismatching cases for
the sensor models. The simulations demonstrate the utility of
the PHD filter to both track the number of targets and their
locations.

Index Terms—proximity sensors, PHD filter, multiple target
tracking.

I. INTRODUCTION

Proximity (or binary) sensors are simple, low power devices
that report whether or not they detect a target. Typically,
these sensors are used to cue more sophisticated sensors that
require more power in order to classify and track the targets.
This paper investigates the feasibility of a mesh network of
proximity sensors to track targets. In such a network, the no-
detection report is as valuable as a detection report. Previous
work has revealed the potential of target localization and
tracking for a single target [1], [2], [3], or for a ideal disc
sensing model [4], [5], [6], [7], [8] where [7], [8] does consider
multiple target tracking. There are two models to describe
the behavior of the proximity sensor that drive localization
algorithms. Many approaches are based on the disc model
that assumes a sensor detects a target when and only when the
target’s distance to the sensor is below a sensing radius [4], [5],
[6], [7]. The disc model ignores physical phenomenology such
as the additive effects of the energy radiating from multiple
targets will extend the sensing range. Other approaches use
a probabilistic model for the sensors that is based on a
physical energy loss as the energy is radiated from each of
the targets [1], [2].

For multiple-target tracking, Singh, et al., proposed Clus-
terTrack, which is a clustering-based particle filter approach
to track targets based on the disc model [7], [8]. While
ClusterTrack can track targets in real-time, the method can
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only localize all targets when operating in a batch mode
where measurements from later points in time are employed
to localize tracks at a given time. Furthermore, it assumes
the number of targets in the scene does not change over the
batch processing interval. He, er al. proposed a multitarget
tracking approach using a probabilistic model [9]. However,
the method only tracks the presence of targets within cells of a
grid. On the other hand, the focus of our work is to localize and
track multiple targets over continuous states including target
location. Our recent work presents a maximum likelihood
(ML) localization algorithm for multitarget localization when
the number of targets is known [10]. This work extends [10]
by considering the more general application of target tracking
when the number of targets is unknown. To this end, the likeli-
hood function is integrated into a particle filter implementation
of a modified version of the probability hypothesis density
(PHD) filter as described in [11].

Traditional particle filter approaches in multiple target track-
ing must employ measurement-to-track association techniques
to ensure as much as possible that target state estimates are
not contaminated by wrong measurements [12]. In contrast,
the PHD filter introduced in [11] is able to “sweep the
association issue under the rug” because the PHD is actually
tracking the density of target presence, i.e., PHD, and not
actual point targets. The estimated number of targets in the
scene is simply the integral of the PHD over the target
states. However, extraction of estimates of the target locations
requires a clustering method. The issues of how to transform
the PHD into point target estimates are discussed in [13].

The applications of the PHD filter have been seen in sonar,
visual, and radar tracking [13], [14], [15], [16], [17], [18]. For
example, [14], [15] implemented the PHD filter to identify
the underwater obstacles that would need to be avoided in
navigation using forward-scan sonar images. In [16], the PHD
filter was employed to track a random number of pedestrians
in image sequences and derive their location sequences. In
[17], the PHD filter was applied to target tracking using
both range and Doppler measurements. More generic PHD
filters are described in [13], [18] that incorporate Cartesian
target position measurements directly or through bearing and
range measurements. To the best of our knowledge, the PHD
filter has not yet been used in proximity-based multiple target
tracking.

These PHD filters assume that the measurements are in-
dependent and associated to one target. As a result, the
measurement update of the PHD has a simple analytical form.
This paper takes a more general view that the PHD filter is a
sequential Bayesian tracker that is only following the evolution
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of the first order multitarget moment of the multiobject density
no matter the dynamical and measurement models that are
incorporated. A motivation for the PHD is that following the
multiobject density itself is too cumbersome for practical im-
plementation, e.g., via particle filtering. In this paper, we apply
PHD filtering for a mesh network of proximity sensors where
the measurements do not directly associate to a single target.
As is shown in the next section, the response of the proximity
sensor depends on its location relative to the location of all
targets within the scene. As a result, the measurements, i.e., the
binary outputs of the proximity sensors, are intertwined with
all targets. Therefore, tracking with binary sensors requires a
modification of the likelihood (measurement) update equation
in the original PHD formulation. In this paper, we derive the
modified measurement update equation by using the same
Bayesian update method as in [11], with the exception that
the form for the multisensor/target likelihood is not separable.
Unfortunately, the new likelihood update method does not
admit a closed form analytical solution. Nevertheless, the
numerical computation via particle filtering is straightforward.

This paper is an extension of a series of our earlier confer-
ence papers that initially presented our ideas for PHD-based
multitarget tracking via a network of proximity sensors. The
initial method was introduced in [19], and the method was
compared with ClusterTrack in [20]. The ClusterTrack particle
filter is to the best of our knowledge the only other method to
track multiple targets over a continuous space via proximity
sensors. An initial version of the ClusterTrack particle filter
was proposed for the disc sensor model and tested on 1-D
data in [7]. In [20], we demonstrated that unlike that version of
ClusterTrack, the PHD method was able to accurately estimate
the number of targets, and the PHD methods were able to
better track the targets. In [21], we investigated the perfor-
mance of the PHD method as a function of sensor density
and target separation of two targets. That work demonstrated
that the PHD method using the probabilistic sensing model
is able to estimate the number of targets and localize them
no matter the target separation for sufficient sensor density.
This paper expands upon [19], [20], [21] by presenting a
more thorough description of the new PHD filter and its
particle implementation. Furthermore, this paper includes a
new investigation of the performance of the PHD method for
both model matching and mismatching conditions. We also
compare the PHD methods against the more recent version
of ClusterTrack [8]. Furthermore, this paper investigates the
tradeoff between the relative weighting on the reliance on prior
measurements and current measurements through the use of
“innovative” particles.

The paper is as organized as follows. Section II provides
details about the proximity sensor model. Then, Section III
provides a basic review of finite point processes and presents
the new PHD filter for the proximity sensor network and its
particle filter implementation. This section also discusses a
clairvoyant N-target particle filtering method that provides the
baseline to understand the effectiveness of the PHD filter to
estimate the number of targets and localize their positions.
Simulations are provided in Section IV to characterize the
performance of the PHD filter in light of the clairvoyant track-

ing methods and ClusterTrack. Two sensor model matching
cases and two sensor model mismatching cases are considered.
Finally, Section V provides concluding remarks.

II. SENSOR MODEL

This section presents two sensing models that describe how
the interactions of the targets within a proximity sensor lead to
a binary measurement. The probabilistic sensor model taken
from [2] considers how the signals radiating from the targets
physically manifest into a measurement. The disc model is an
idealization that is commonly seen in the literature. While we
believe that the probabilistic model is a better representation
of how measurements emerge, it is interesting to understand
the implication of both models on tracking performance in a
proximity sensor network.

A. Probabilistic sensor model

The probabilistic model accounts for the effects of sensor
noise so that a sensor will report (or not report) a detection
based on some probability of detection. This detection proba-
bility goes up as the signal from the targets increases, which
happens as targets move closer to the sensor. The probabilistic
model used in this paper is taken from [2]. In essence, the
model assumes that target signals are uncorrelated so that the
power measured at the sensor is the sum of target powers at the
sensor plus measurement noise. Specifically, the instantaneous
received power p;, i.e., the power measurement of the i-th
sensor at a given point in time, is given by

Ny r a
k
pi=) po,k( 0 ) + v, (1)
k=1

Tik

where pg j is the power measured at a reference distance rg j
due to the k-th target, IV; is the total number of targets, r;‘ &
is the relative distance between the i-th sensor and the k-
th target, « is the attenuation parameter that depends on the
transmission medium, and v; is additive white Gaussian noise,
i.e.,

v; ~ N (,uv,afj) .

The mean and variance of the error v; is derived from the
zero mean measurement noise of variance o2 for the case
that the measured power is the result of integrating the square
of the measurements over L samples. As shown in [2], [22],
integrating over L samples leads to i, = 02 and 02 = 20 /L.
This paper assumes the reference distances rgj = 7o and
target powers pg j, = po for all K targets, and rg and py are
known. As discussed later in this subsection, knowledge of
po enables one to infer the number of targets simply from the
binary detection reports. Clearly, the assumption that the target
signal powers are all equal and known is not realistic, and
future work will investigate the relaxation of this assumption.

The i-th sensor measures the received power p;, processes
it locally, and reports a single binary digit: ‘1” for the presence
of one or more targets or '0’ for the absence of any target.
The decision follows the rule

Zi:{ 1 pi>)‘7

0 pi <A @
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Fig. 1. Py vs. target distance, where Pr,=0.001, a = 2, 0 = 0.5, po =
3000, 79 = 1m, and L = 100.

The probability of false alarm Py, is the probability that z;
exceeds the threshold when N; = 0. For a desired value of
Py, the threshold X is computed as:

A= Uinl(Pfa) + Ho,
where Q(-) is the Q-function

1 e 2

Furthermore, the probability of detection P, for the chosen
threshold (or Py,) at the sensor is a function of the positions
of the IV, targets, i.e., y, relative to the location of the sensor,
ie., s, as given by

3)

Pi(s,[y1,---,¥ynN,]) Prob(z; = 1]|targets), €]
= Prob(p; > \l|targets),
0)\1 PNt 70,k @ 1
_ Q@ - k=1 Po,k Th 7IJ’UA7
Oy
where r, = ||yx — s||. Fig. 1 illustrates P; as a function

of the target distance for various numbers of targets. For the
case of a single target, the figure demonstrates that Py as given
by (4) behaves as a sigmoid function that steps down from a
value near one to a value near Py, over a transition region
from 100m to 200m.

For multiple targets, the addition of the target powers as
seen in (4) does extend the sensing range of the sensors as
demonstrated in Fig. 1. This fact actually allows for one to
infer the number of targets when looking at the distribution of
detection reports in a mesh network of proximity sensors. If
the targets are far apart, one would expect to see separate
clusters of sensors reporting detections around each target.
When the targets are near each other, only one cluster emerges.
The size of the cluster increases as more targets are in the
same vicinity due to the addition of powers in (4), and it is
the size of the cluster that provides the clue to the number of
targets. The ability to estimate the number of targets depends
on having a good handle on the target radiation power pg . If
Do,k 18 not known, then the number of targets within the cluster
of sensing nodes is ambiguous, e.g., is there one loud target

or multiple quiet targets? For this reason, we assume in this
paper that pg ;, = po. Future work will investigate robustness
of this assumption when the targets radiation power is known
to fall within a certain range.

B. Disc sensor model

Many papers exploiting proximity sensors assume the disc
sensor model, where a sensor always detects one or more
targets if they are within the detection range r.yy and never
detects any target if all are further than 7.y, from the sensor:

1 Hk‘, Y —S < Teffs
Py(s,[y1,---,¥k]) = { 0 H otherWHiSe. o

3)

The disc model ignores the physical process as discussed
in the previous subsection that enables sensors to detect the
targets. For instance, the presence of multiple targets extends
the detection range of the sensor due to the superposition
of the target energy. As discussed, it is the superposition of
power property that allows one to estimate the number of
targets. For the disc model, the number of targets is always
ambiguous. Consider a proximity sensor network with one
cluster of detections. The cluster could be the result of one
target or hundreds of targets within the same vicinity. Beyond
the fact that the disc model is an idealized representation of the
behavior of the sensor, the inability of the disc sensing model
to disambiguate the number of targets is a severe weakness
that can affect the performance of tracking algorithms based
on this model as demonstrated in Section IV.

III. MULTIPLE TARGET TRACKING

The multiple target tracking approach for the binary proxim-
ity sensor network proposed in this paper exploits the theory of
finite point processes (or random finite set statistics (FISST)).
Rigorous derivations of multiple target tracking from FISST
can be found in [11], [13], [18]. In essence, at a given snapshot
in time, the set of all targets is modeled as a realization of
a finite point process. The tracking approach simply updates
statistics about the posterior distribution of the finite point
process given the sensor measurements.

A. Finite Point Process Basics

For the purposes of this paper, a finite point process is a
random process whose realization is a set of points within a
d-dimensional state space R¢. The realization can be viewed
as a sample from a two step process where the number of
objects n is sampled from the probability mass function (pmf)
fn(n), and then the n d-dimensional states are sampled from
the joint probability density function (pdf) fy, (X1, ..., Xn[n)
that is conditioned on the number of targets. The overall state
of a realization of a finite point process is the number of
points and the individual state vectors describing each point.
Thus, the finite point process state is a variable dimension state
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probability density for the finite point process state is!
f(X):f fz\n(xla'”»xnx‘nX)fn(nX)v (6)

(Ma;X1,. ., Xny) =

which is referred to as the multiobject density function for
the finite point process. As any probability density, the integral
over all possible realizations is one. Given that the number of
arguments within the density differs based on the number of
realized points, the integration of all realizations is

composed of a prediction and a likelihood update stage. The
prediction step starts with the PHD D;_;;_;(x) of the prior
multiobject density, i.e., the density of the finite point process
given measurement up to time ¢ — 1. We refer to D;_1},_;(x)
as the prior PHD. The prediction step determines the PHD
Dyjs—1(x) for the density of the finite point process as it
evolves to time t. We refer to Dy;_;(x) as the predicted PHD.
The evolution considers target motion, death, and birth models
for the points. In [11], Mahler proved a simple relationship
between the prior and predicted PHDs (see (75) in [11]). This
work does not consider the target death and birth models, and

> _without these models, the relationship simplifies to

/f X)X = Z /f (Na; X1y .oy Xny )dXy - dXp, = Z Il

TL)(ZO

nx=0

)

A useful statistics to summarize the multiobject density is

the probability hypothesis density (PHD), which represents the

support of the density for a particular target state over all
possible target count hypotheses, i.e.,

9-3

ny=1

®)

Therefore, the PHD represents the density of the expected

number of objects at a particular target state x; that is, the

integral of the PHD in the target space represents the expected

number of objects. In short, the PHD filter not only provides

the density of multiple targets but also the estimates of the
number of targets in the scene.

B. Track Filtering

Single target track filtering basically transforms a posterior
target density for time ¢ — 1 into a predicted (or prior) density
for time ¢ through the use of a stochastic target motion
model. Then the prior density is transformed to a posterior
density through Bayes’ rule in the likelihood (or measurement)
update stage. Similarly, it is possible to perform multiple
target track filtering using the multiobject density. A particle
implementation of such a Bayes multitarget filter is presented
in [13]. The main problem with the Bayes multitarget filter
is that the dimensionality of the multiobject density function
is not bounded, and as the number of targets increases, the
support of the multiobject density migrates to portions of the
density representing increasingly higher dimensionality.

The probability hypothesis density (PHD) filter was intro-
duced by in [11] as a means to control the curse of dimension-
ality. Instead of tracking the full multiobject distribution over
time for the finite point process, the filter simply tracks the
PHD as defined in (8), which is a first order moment of the
distribution. Just like any other track filter, the PHD filter is

As defined, f(X) is virtually the same as %jn({x17 ...,Xn}) where
jn(+) is the Janossy density [11]. For the sake of notational convenience in
the development of the particle filter, the symmetry property of the Janossy
density is not maintained in f(X), e.g., the density (21) is technically not
symmetric. Forcing the multiobject density to be symmetric in the particle
filter development is straightforward but requires additional computational
resources, e.g., memory, and arrives at the same PHD due to collapsing the
density (see (23)) and the symmetry of the likelihood given by (13).

<Z5 —X> fysyis. . yny)dyr - -d

n\Nx ) =1
Dt|t 1( /ft|t 1(x[w)D,_ 1|t— 1(w)dw,
where fy;_1(x|w) is the density of a point’s state x at time ¢
conditioned on its state w at time ¢ — 1. The specific form for
Jtjt—1(x|w) represents the motion model. The motion model
evokes a Markov assumption for the movement of points, and
it assumes targets move independently of each other.
The likelihood update stage evokes Bayes’ rule to determine
Ythe ‘PHD of the posterior multiobject density given the mea-
surements up to time ¢. In general, the resulting PHD D, ;(x),
which we refer to as the posterior PHD, cannot be uniquely
determined solely by the predicted PHD. In other words, two
mutiobject density functions that have the same PHD will not
in general have the same PHD after the likelihood update. To
ground the density, the PHD filter approximates the predicted
multiobject density with the density of a Poisson point process
(PPP). As show in Theorem 4 in [11], the best Poisson
approximation in the sense of the Kullback-Leibler divergence
is the Poisson point process whose intensity function is the
predicted PHD, i.e.,

€))

ft\t—l(X) = ft|t—1(n§X1>~~~aXn o (Hth 1(xs ) exp{ /Dt
=1

(10)
Given the density of the measurements conditioned on the
realization of the point process, Bayes’ rule leads to the

posterior multiobject density
(H Dt\t 1 (i ) exp{ /Dt\t—

(11
where C is the constant so that the posterior integrates to one,
ie.,

C= Z/fZ‘X 2| X)— (HD“ (%3 )exp{ /Dt‘t . dx}d

(12)

Then, the posterior PHD D,;(x) is calculated by applying

(8) over (11). Finally, D,;(x) is treated as the PHD for the

prior multiobject density for the next round of prediction and
measurement updates.

In the traditional use of the PHD as proposed by Mahler, the

measurements are modeled as a point process whose points are

ft\t(n;Xla---7Xn) fZ\X
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a mixture of a clutter PPP and points spawned by targets. In
this case, fz|x is a multiobject density function conditioned on
the realization of the target process. Furthermore, an analytical
relationship exists between the posterior and predicted PHDs
so that the use of Bayes’ rule over the PPP approximation for
the multiobject density is implicit.> As a result, the particle
implementation of the traditional PHD filter only requires
particles to represent the PHD. In general, we view the PHD
filter as the process of performing the prediction and likelihood
updates for the tracking of the PHD of the finite point process
conditioned on the observations via (9), (11), and (8). When
the measurements are a mixture of a clutter PPP and target
spawned measurements, then the PHD filter is the familiar
implementation.

For the application of multiple target targeting using binary
sensor measurements over a 2-D field, the target state is a 4-D
vector representing the 2-D position y and 2-D velocity v of
the target, ie, x = [ y? v’ ]T and d = 4. The discretized
continuous-time white noise acceleration (DCWNA) model
is employed for the motion model [23]. Each binary sensor
measurement has a pmf given by (4) or (5) for the probabilistic
or disc model, respectively. The measurement model also
assumes the sensor measurements are statistically independent.
For a proximity sensor network of Ny sensors, the likelihood
fzx for measurements z € {0, 1}Ns is given by

N
Pd sm7

m=1

¥ (1= Pa(sm, V) 7,

13)
where Y = [y1,...,¥n] is extracted from X, s; is the location
of the i-th sensor, and z is the collection of binary measure-
ments at the current time. Note that the likelihood is a pmf
evaluated at the values of the reported sensor measurements.
From (4) (or (5)) and (13), it is clear that the likelihood is
symmetric with respect to any permutation of the target state
indices within &X'. To the best of our knowledge, the calculation
of the posterior PHD from the posterior multiobject density
after the likelihood update does not simplify as a simple
analytical transformation of the prior PHD.

fz1x(z

C. Farticle PHD Filter for Binary Sensors

Unlike the particle implementation of the traditional PHD
filter, the particle implementation of the general PHD filter re-
quires particles to sample the PHD, and other particle derived
from the PHD particles to sample the predicted multiobject
density. The basic steps of the proposed particle PHD filter
are to 1) propagate the PHD particles via prediction update in
(9), 2) sample the predicted multiobject density from the PPP
approximation in (10) to form multiobject density particles,
3) compute the likelihood update in (11) using the multiobject
density particles as an approximation of the actual density, and
4) collapse the multiobject density particles into PHD particles
through (8). This section explains how to perform these steps.

2[11] uses probability generating functionals to derive the PHD likelihood
update equation where the usage of Bayes’ rule via (11) is also implicit.

To begin, the prior PHD at time ¢ — 1 is approximated by
P single target particles {w”), ng)l};;l so that

P
) ~ Z wt@lé(x - Xf‘zi)l)’
p=1

where 0(-) is the Dirac delta function. Then, the estimated
number of targets is the integral of the PHD so that

Z w(p)

To compute the predicted PHD, the p-th particle is sampled
from the proposal density z; ® ft‘t_l(x\xgzi)l). Given the
DCWNA motion model, the predicted particles are obtained
by diffusing the prior particle such that

Dt—1|t—1(X (14)

15)

Xz«(p) _ infi)l —|—Q%V(p), (16)

where v(?) is sampled from a white Gaussian random number
generator, and F' and () are the state transition and process
noise covariance matrices, respectively (see [23]). In other
words, the proposal density is Gaussian with mean Fxfﬁ)l and
covariance (). Since the proposal density matches the actual
motion model, the predicted PHD is simply

Ewtl

Note that since the target prediction step does not incorporate a
target birth and death model, the predicted PHD still integrates
to N t—1-

To perform the likelihood update, samples from the PPP
approximation of the predicted multiobject density given by
(10) must be generated where the predicted PHD is (17).
The two stage PPP sampling approach as explained in [24]
is employed. For the p-th multiobject particle, the number of
hypothesized targets is sampled from a Poisson distribution
with mean N;_, that is, n(®) ~ Pozsson(Nt 1). Then, each
of the states of the n(P) targets is sampled from the normalized
predicted PHD given by (17) divided by Ny_1.3 This is
equivalent to selecting each of the target states to be one of the
P PHD particles where the particle to s?l)ect is sampled from

=1,...,P.
The proposed method uses this PPP samplmg approach to
generate Pn., multiobject particles where n., > 1 is a user
supplied parameter.

When a modest number of particles are used to approximate
the predicted PHD, it is possible for the particles to drift
away from the true target locations due to an imperfect motion
model. To regularize the process, it is helpful to generate some
innovative multiobject particles by sampling from likely target
locations given the current set of measurements. For these
particles, the number of targets represented by a single multi-
object particle is still sampled from a Poisson distribution with
mean N;_;. The target states are generated from a proposal
density ¢(+|z) that is conditioned on the current measurements.

x: (p) ).

Dyje—1( a7

3Normalized to integrate to one.
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This proposal density could be the scaled likelihood using
the Metropolis-Hastings method [25], but such a method is
of high computational complexity. In this paper, the proposal
density for the position components of the target states is a
rectangular bounding box that encompasses all sensors that
report detections. The velocity components of the target states
are set to zero. The bounding box represents a computationally
efficient proposal density that approximates the more costly
method of incorporating the feasible target area (FTA) used in
[20], [21].

Overall, J innovative multiobject particles are generated,
and P., = Pne, + J multitarget particles represent the
predicted target density

Pex
Fae-1(X) = > 5(x:47), (18)
p=1
where
. 0 if ] # |
5(X;Xt(p)) _ o " || 7é 1
[1i2; 6(x —x;%) otherwise
is the equivalent of a delta function centered at Xt(p ) over the

(p)

multiobject space, and n; (

and xtﬁ) are extracted from X7 Tt
is not difficult to verify that §(-) satisfies the sampling property

[ )

F(X)5(x; 7)) =

S(x; XxPhsx = (™) (19)

so that

FES X 7). (20
Also, the weights are not explicit in (18) since they are
equal to one due to the fact the particles are sampled from
the desired density. In effect, the generation process creates
particles sampled from a PPP with an intensity (or PHD) of

Pngy J

D(X) = P Dt‘t_l(x) + Pf
exr exr

D, (x),

where D,.(x) represents the portion of the regulated PHD due
to the innovative particles. It is uniform over the bounding box
surrounding the sensors reporting detections, and it integrates
out to Nt—l so that the estimated number of targets due to
regularization does not change. The ratio J over P, represents
the importance the regularization places over on current mea-
surements relative to the prior measurements. When J = 0,
the predicted distribution is the normal predicted distribution.
On the other hand, when J = P,, the predicted distribution
completely ignores the prior measurements. A moderate value
of .J prevents the set of particles to lose track of the target due
1) to either too few particles to properly represent the density
or 2) to an overly simplistic dynamical model.

The likelihood update passes the density given by (18)
through (11) and (12) using the likelihood given by (13). As a
result of the sampling property (19)-(20), the posterior density

is
(X Zw x; x7), @1

where the weights

w) = éfZ|X(Zt|Xt(p))a (22)
z; are the binary measurements collected at time ¢, and C' is
a constant so that the weights sum to one.

The final step of the PHD filter is to collapse the posterior
density back down to the posterior PHD by inserting (21) into
(8). As a result,

n(®)

waZcS XEPZ) ),

~ Z w:(p)d(x . X:(p))7
p=1

Dy(x) =~ (23)

P, .
where P* = 7 n(P), and there is a one-to-one corre-

spondence between the PHD particles x, “®) and multiobject
particle components xg). Each multiobject particle component
leads to a PHD particle, and when the k-th PHD particle
originated from the /-th component of the m-th multiobject
particle, then xt(k) = xyl") nd w, (k) = = w],. The expression
for the conversion of multlobject particles to PHD particles
has appeared in [13] (see Section 2E) for generating target
state estimates in implementation of the Bayes multitarget
filter. Integration of (23) leads to a target count estimate of
N, = 25:1 nPwl = 25:1 w;®). Finally, the PHD is
resampled down to P particles so that the number of samples
does not continue to grow after each likelihood update. To this
end, the P particles are selected from the P., particle using

sam%)hng with replacement from the multinomial distribution

N
P

Dyu(x) = Y wi”d(x — xP), 24)
p=1

where w,E” ) = N, /P. For the next stage of prediction and

measurement updates, (24) replaces (14) as the prior PHD.

The implementation of the PHD particle filter at any time is
summarized in Fig. 2: Start with the prior PHD particles (Step
1), form the predicted PHD particles via the target motion
model (Step 2), expand to the particle representation of the
PPP multiobject density (Steps 3-5), perform the measurement
(or likelihood) update (Step 6), and calculate the posterior
PHD (Step 7-10). After the P particles for Dy(x) are
obtained, the k-means method is used to group the particles
into round(N;) clusters. The centroids of these clusters are
used as the estimated target states.

The particle implementation of the PHD filter in Fig. 2 is
able to estimate the number of targets without any target birth
and death model due to the expansion of the PHD particles to
multiobject particles. Specifically, Step 3 means that the PHD
does explore hypotheses of various numbers of targets. Then,
the likelihood update is able to emphasize hypotheses whose
target counts better explain the measurements z at the given
snapshot in time. It is these hypotheses that mostly determine
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2) Obtain P predicted PHD particles: x, +()
zero mean white Gaussian noise vector.

bounds all the detecting Sensors.

*(k) | *(k)y p*
Wy 7 Ty k=1-

*(P)
Nf'

11) Lett:=t+ 1 and goto Step #1.

1) Given P prior PHD particles {wgk)l, X,Ek)l},f:1 where N;,_; = Zf 1 wgp)l
= nyi)l +Q%V(p)7p =12,...,

3) Obtain P, Poisson samples with mean Ny_1:n®) ~ Poisson(Nt_l), k=1,2,...,P,,, where
Pez - Pnex + J.

4) Obtain Pn., predicted multiobject particles {xt F X,Ekyzm [mes where the k-th multiobject
pa(rt)1cle consists of n(¥) target states drawn (with replacement) from {x; ®)y P }p 1 with probability
w? L
Nea'

5) Obtain J innovative multiobject particles {xt Tyee-

ject particle consists of n(*) target state samples drawn uniformly from a rectangular box that
6) Obtain the weights {wk}k“1 for the P, multiobject particles {xgkl), . ,x(k)(,c)}k
and then normalize the weights to sum to one.

7) Convert P., multiobject particles to P* PHD particles at time t by (21) to form

8) Estimate the number of objects at time ¢: N, =
9) Obtain P posterior PHD particles drawn (with replacement) from {x; (» )} _, with probability

10) Weigh each PHD particle XEP ) uniformly as w

P, where v(?) is a

f n( i "j;fj 41 Where the k-th multiob-

by (13),

Zk” n®w k

= N,/P.

Fig. 2. Steps of the particle implementation of the PHD filter for proximity sensor networks.

the posterior PHD particles. Nevertheless, the particle imple-
mentation could be enhanced by explicit target birth and death
models. This is left for future investigation.

D. Initialization

The PHD filter begins with an initial set of particles at time
t = 0 to approximate Dgo(x). For most of the simulations in
Section IV, we generated P particles where the location states
are uniformly sampled over the surveillance region covered
by the sensors, and the velocity states are sampled from a
Gaussian with mean zero and o = 10. The weight associated
to each particle is initially set to N/P where N is a prior
estimate of the number of targets. In the simulations, IV is
set up to be 0.5 for the PHD filter. * For the clairvoyant
particle filters in Section III-E and Section III-F, NV is the true
number of targets because we assume the number of targets is
known a priori. To determine the sensitivity of the PHD to the
initialization, some of the simulations generated the location
states by restricting these values to be drawn uniformly within
the rectangular bounding box for sensors reporting detections.

E. Clairvoyant multitarget particle filter

Unlike the PHD filter, the particle implementation of mul-
titarget Bayes filter requires explicit target birth and death
models. For example, when the scene contains N targets,
the multiobject particles that survive will correspond to N
targets. Without explicit birth and death models, when more
targets emerge or if targets leave the scene, there is no

4This is to show that despite the mismatch in the initialization, the target
count can quickly converge to the true value.

mechanism for multiobject particles corresponding to target
counts different than N to emerge. To perform a comparison
of the PHD filter with the multitarget particle filter in this
paper where birth/death models are not considered, a clair-
voyant multiobject particle filter is used. This allows one to
understand the effectiveness of the PHD filter to track multiple
targets. The particle filter is clairvoyant in the sense that
the number of targets N is known a priori. Therefore, no
target birth/death model is needed. The performance of the
filter indicates the effectiveness of standard processing when
the number of targets need not be estimated. Effectively, the
N-target clairvoyant particle filter (CPF) is a particle filter
implementation of the multitarget sequential Bayesian filter
when the multiobject density function f(nx;x1,...,Xp, ) has
nonzero support only for ny = N. Thus, the p-th multiobject

particle is Xt(p) = { N XEPBT xgpjz,T

Initially at time t = 0, P ﬁ]ultiobject particles are generated.
These particles are composed of N 4-state subparticles that
collectively form a sampling of foo(N;x1,...,xn). For
cases where targets appear or disappear at certain times, the
multiobject density function is adjusted accordingly. Given P
multiobject particles, the evolution of the particles {Xt(f )1 .

at time ¢ — 1 proceeds as follows:

1) Obtain P predicted multiobject particles: Xt(p ) =
{X,Epl) N | where xgp) = Fx(p S+ Qive) p =
1,2,...,P.

2) Obtain J innovative multiobject particles X ® =
{xipl) N | where the p-th multiobject particle consists
of N target states drawn uniformly from a rectangular
box that bounds all the detecting sensors.

3) Obtain the weights {w]}.*} for the P+ J multiobject
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particles {Xt(p )}5;’1‘] where the weight for the p-th
multiobject particle wzf; is computed by (13).
4) Resample the P + J multiobject particles to obtain
P particles {X" 1, where X" s selected with
T T,Uf
probability 7.

5) Let t:=t+1 and goto Step #1.

The components (target state vectors) in the multiobject
particles may not align between particles. In other words,
the i-th target component in the particle Xt(m) and the i-th
target component in the particle Xt(") when m # n may
not correspond to the same target. To calculate a minimum
mean squared error (MMSE) estimate of the target states, the
subparticles in each particle are assigned ground truth targets
by solving the 2-D assignment problem [26]. That is each
subparticle is matched to one and only one ground truth target
and vice versa. Finally, the weighted average of all subparticles
associated to a particular ground truth target is computed as the
state estimate for that target. Clearly, the CPF is incorporating
information that is unknown to the filter to provide the state
estimates. The purpose of the CPF is to simply baseline the
performance of the PHD method.

F. Clairvoyant PHD

In the CPF, the grouping of subparticles into particles
affects tracking performance because this grouping is always
maintained in the filter. On the other hand, the PHD continues
to mix up target state particles when it forms the multiobject
density from the PHD. This process allows for innovative
combinations of single-target particles. In some sense, the
PHD filter performs a crossover step similar to genetic pro-
gramming. However, the PHD is also estimating N, which the
CPF does not have to do. To determine the effectiveness of
these crossover operations without the burden of estimating
N, we also consider a modified PHD where N is known.
Specifically, Step #3 of the PHD filter in Fig. 2 is changed so
that n*) = N for k = 1,..., P.,,. We refer to this PHD as
the clairvoyant PHD.

G. Performance Measures

The Wasserstein [27] and optimal subpattern assignment
(OSPA) [28] metrics are common measures of performance
for PHD track filters. They combine the effects of position
and cardinality errors in a single quantity. However, we wish
to deconflict these two types of errors. The cardinality error
is simply |J\7t — N;| where N, and N, are the estimated and
actual number of targets in the scene, respectively.

For the target state errors, we modify the OPSA metric [28]
to consider only the position errors and not the cardinality
errors. This performance measure operates on the set of
estimated target states X and the set of ground truth target
states Y representing the position components. We refer to
the modified performance measure as the cardinality agnostic
OPSA (CA-OPSA). The CA-OPSA is not a metric in the strict
sense as a measure of zero does not imply X = Y due to
possible differences in the sizes of sets X and Y. Formally,

the CA-OPSA is
|X] Y]

1
D(X,Y) = ming >N Cigd(xiy;), (25)
i=1 j=1
s.t. Moy <uyMoy <
x| Y|
2.2 Ciy=5
i=1 j=1

S = min(|X|,|Y]). and C;; € {0,1},

where d(z;,y;) is a user selected distance measure between
the ¢-th and j-th position states for sets X and Y, respectively.
In this paper, d(-,-) is the standard ¢2 norm. In essence, the
CA-OPSA represents the average root mean squared (RMS)
error for the 2-D assignment of the estimated and ground truth
target states such that one and only one estimate is assigned
to a ground truth element and vice versa. If |X| > [Y],
the extra target estimates are not assigned to ground truth
elements. Likewise, if |X| < [Y|, the extra ground truth
elements are not assigned to target estimates. Note that other
metrics do exist that are relatively insensitive to differences
in the target cardinality, e.g., the Hausdorff distance [27]. For
the sake of simplicity, this paper only considers the CA-OSPA
to characterize the localization performance of the proposed
PHD filter.

IV. SIMULATIONS
A. Mode Matching/Mismatching Cases

The first set of simulations considers four scenarios where
targets move through a surveillance region of size lkm X
1km for 100 or 300 seconds. Filter updates occur in snapshot
intervals of one second. The geometry of Scenario A is
illustrated in Fig. 3. In this scenario, two targets travel at
a constant velocity with a speed of about 10m/s. The two
targets cross paths at ¢ = 50s. Fig. 4 provides the geometry
for Scenario B. In this scenario, two targets are maneuvering.
The two targets never cross paths, but they do converge and
diverge with a closest approach occurring around ¢t = 37s.
Fig. 5 illustrates Scenario C where three targets move in and
out of the surveillance region during the 100 seconds. Finally,
Fig. 6 illustrates Scenario D where five targets move in and
out of the surveillance region during the 300 seconds. The
lower number at an end of a track represents the starting time
of the track. Likewise, the larger number represents the end
time of the track. For example, the first track starts at ¢ = 1
and ends at ¢ = 300, the second starts at ¢ = 31 and ends at
t = 270, and the third starts at ¢ = 61 and ends at ¢ = 210,
etc. As a result, the number of targets varies from 1 to 5 at
any given time.

We believe that the probabilistic sensing model provides
a more realistic representation than the disc model for the
behavior of a proximity sensor to its environment. However,
we are interested in understanding the robustness of multi-
target tracking when considering either model. Therefore, the
simulations consider both models for actual sensing behavior
and for insertion into the tracker. Overall, there are four cases.
The first two are matching cases: 1) the actual sensing model
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Fig. 3. Scenario A: (a) Geometry of a 100-sensor network with two targets
traveling at constant velocities, and (b) separation distance between the two
targets vs. time.

is the probabilistic model and the filter assumes the same
probabilistic model, and 2) the actual sensing model is the
disc model and the filter assumes the same disc model. The
final two are mismatching cases: 3) the actual sensing model is
the probabilistic model but the filter assumes the disc model,
and 4) the actual sensing model is the disc model but the filter
assumes the probabilistic model.

For the probabilistic sensing model, the threshold is set so
that Py, = 0.001. In the disc model, r.fy = 117m, which is
the distance that makes P; = 0.5 for P, = 0.001 in the prob-
abilistic model. The filter parameters are set to be P = 1000,
Ney = 1, and J = 100 so that P,, = 1100. For each of
the four scenarios, we generated 10 random configurations
of 100 proximity sensors, and for each configuration, we ran
10 Monte Carlo realizations of sensor reports. Overall, each
scenario consists of 100 simulations. The reported cardinality
and RMS position errors (see (25)) for a given snapshot time
are averaged over the 100 simulations. For these simulations,
we compared the proposed PHD method against the two
clairvoyant filters. To the best of our knowledge, no other
baseline method exists for proximity sensors that can employ
both the probabilistic and disc sending models.

Fig. 7 plots the average RMS position errors versus time
for the PHD and two clairvoyant filters for Scenario A over
the four sensing model cases. Likewise, Figs. 8- 10 provide
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Fig. 4. Scenario B: (a) Geometry of a 100-sensor network with two targets
maneuvering, and (b) separation distance between the two targets vs. time.
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Fig. 5. Scenario C: Geometry of a 100-sensor network with three targets
that move in and out of the scene at different times.

similar plots for Scenarios B, C and D, respectively. The
relative performances of the PHD compared to clairvoyant
filters are consistent over the four scenarios. Regardless of
the actual sensing model, the trackers that incorporate the
probabilistic model into the measurement likelihood update
provide better localization accuracy than those that use the
disc model. The probabilistic model accommodates errors in
the multiobject particle better than the disc model because
perturbations in the particles for the probabilistic model leads
to a gradual degradation of the likelihood; whereas, perturba-
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Fig. 6. Scenario D: Geometry of a 100-sensor network with five targets that
move in and out of the scene at different times.

tions in the particles can lead to sudden one to zero jumps
in the likelihood for the disc model. These properties might
explain the better performance by the probabilistic model.
When the filters incorporate the probabilistic models (Cases 1
and 4), the filters perform similarly for Scenarios A and B. It
takes about 10 seconds for the filters to reach a steady state
after initialization, and the localization performance degrades
only slightly when the target separation is small. Overall, the
localization performances of the filters when implementing the
probabilistic model are robust when the actual sensor behavior
follows the disc model.

For the matching probabilistic case, the clairvoyant PF is
clearly the best, and the clairvoyant PHD is slightly better than
the PHD. For Scenario D, the clairvoyant PHD is better than
the PHD when the number of targets is small, but comparable
when the number of targets is large when tracking is steady.
When the filters incorporate the disc model, the performance
of the CPF is much poorer; especially for the mismatch case
(Case 3). For Case 2, the CPF performance is good when
the targets are near each other, and the performance degrades
significantly when targets are far apart. This is an artifact of
both the proposal function for innovative particles and the lack
of the crossover effect that occurs in the PHD implementation.
It is possible that the weights for all particles become zero as to
be discussed later in Section IV-D. When this happens, all zero
weighted particles are then given equal positive weights. As a
result, this weighting process then cannot distinguish between
particles whose subparticles are closer to the detecting sensors
than others. This problem is exacerbated when the sensors
actually follow the probabilistic model where false alarms and
missed detections can occur. On the other hand, the crossover
effect in the PHD makes the probability much smaller that all
particles have zero weights. This might explain the improved
performance for the PHD methods.

For Scenario C and D, all filters exhibit higher errors
when new target appear and disappear in the scene, but the
performances of these filters improve when the targets are
simply moving. Note the CPF reinitializes when the new
targets enter or leave the scene while the PHD filters still
propagate the previous particles. The estimation error when
the number of targets is large, is higher than that when
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Fig. 7. Scenario A: CA-OSPA errors for (a) matching probabilistic models,
(b) matching disc models, (c) probabilistic sensing model with filter assuming
the disc model, and (d) disc sensing model with filter assuming the proba-
bilistic model.
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Fig. 10. Scenario D: CA-OSPA errors for (a) matching probabilistic
models, (b) matching disc models, (c) probabilistic sensing model with filter
assuming the disc model, and (d) disc sensing model with filter assuming the
probabilistic model.

there are fewer targets. In fact, when the number of targets
grows to three target or more (Scenarios C and D), the
localization error is much poorer than when the number of
targets is two or less. The CPF exhibits similar problems in
Scenario C and D when employing the disc model as it does
for the other two scenarios. Overall, the PHD performs very
favorably to the clairvoyant filters despite the fact that the
PHD is actually estimating the number of targets in the scene
during each snapshot interval when the disc model is involved.
Surprisingly, the clairvoyant PHD demonstrates little to no
advantage over the PHD for any of the sensing model cases
over all scenarios.

Figure 11 shows the average estimated number of targets
versus snapshot time for the PHD filter for all four sens-
ing model cases over all four scenarios. For the matching
probabilistic case (Case 1), the PHD is able to accurately
estimate the number of targets. When the PHD still uses the
probabilistic model but the sensor behaviors follow the disc
model, the PHD can still accurately estimate the target number
as long as the targets are sufficiently spaced. When the targets
are nearby, the sensing range of the sensors do not increase,
and the size of the cluster of sensors detecting the sensors
is consistent for a single target in the probabilistic model.
Therefore, the PHD underestimates the number of targets.
When the PHD employs the disc sensing model, the ambiguity
issues related to the disc models makes it impossible for the
PHD to accurately estimate the number of targets over all
snapshots.

B. Effects of Innovative Particles, Motion Model, and Initial-
ization

In all the simulations presented up to this point, about
9.09% of the multiobject particles are innovative (J = 100,
P.. = 1100). Some innovative particles are necessary to
regulate against a small number of particles and/or a simple
motion model. In the next set of simulations, J is allowed to
vary to study the effect of the number of innovative particles on
performance. Fig. 13 plots the performance of all three filters
as percentage of the innovative particle when P., = 1500.
This figure represents the matching probabilistic sensing case
of Scenario A. Similar results were obtained over the other
scenarios for sensing Case 1. Note that when J = 1500,
all the multiobject particles are innovative, and the motion
model is ignored. The filters are simply fusing the current
set of binary sensor measurements to localize the targets.
As J increases from zero to 1500, the filters are simply
putting more confidence on the current measurements. The
figure demonstrates that about 10% of innovative particles are
sufficient to accurately estimate the number of targets and
their locations. The performance degrades only slightly as the
innovative percentage grows from 10% to 90%. The local-
ization performance falls off by a factor of two when using
all innovative particles. Thus, the tracking, i.e., incorporation
of prior measurements, does provide for some performance
advantages.

The good performance of using all innovative particles
relative to using none implies that the proposal function to
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obtain innovative particles is effective. To better understand
the tradeoff between the prediction due to the target motion
model and the innovation due to the current measurements, in
Fig. 14, we compare PHDs for Scenario 1 and Case 1 when
one uses the ground truth, the random samples in the whole
field, and the random samples in the rectangular area bounding
all detecting sensors as the initial PHD particles, respectively.
Since in Scenario A, the targets are moving at a constant veloc-
ity, the ground truth initial 4-state PHD particles are the true
target positions and velocities. For the random initialization
case, the initial particles are random samples in the whole field.
For the detecting sensor initialization case, the initial particles
are random samples in the smallest rectangular bounding box
surrounding the detecting sensors. It is clear that the ground
truth initialization helps the most when there are no innovative
particles. As the number of innovative particles increases, the
advantages brought by the ground truth initialization become
less obvious. When using the detecting initialization, the track
filtering employing no innovative particles is as effective as
employing all innovative particle. One still needs to use around
10% innovative particles for best localization performance.
Note that the smaller range for the y-axis in Fig. 14(a) than
in Fig. 13(a) shows that localization performance degrades
slightly as the number of innovative particles increases from
10% to 90%. Finally, Fig. 14(b) demonstrates how good
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Fig. 14. For Scenario A and matching probabilistic case, PHD with random
initialization, ground truth initialization, detecting sensor initialization (a).
Average CA-OSPA errors versus the percentage of innovative particles; (b).
Average CA-OSPA errors versus time when the innovative particles are either
zero or 10 percent during tracking

initialization and/or innovative particles enable the PHD filter
to reach a steady state behavior.

C. Comparisons with ClusterTrack in 1-D

The next set of simulations compare the PHD against
the instantiation of ClusterTrack as described in [8]. Unlike
the PHD method, ClusterTrack returns particles representing
possible tracks where a particle is the estimated location point
of time at each snapshot interval. The initial iteration of
ClusterTrack builds up the particles over time in a sequential
fashion so that at time ¢ = 7" a particle represents the estimated
location of a target from ¢ = 0 to ¢ = T using data up to
time 7'. ClusterTrack also assumes that the number of targets
is constant and estimates the target number as the maximum
number of feasible target regions over the entire surveillance
time interval. Then, ClusterTrack uses multiple iterations to
refine the particles so that feasible target regions are covered
by the collection of particles. To this end, ClusterTrack does
not account for appearance and disappearance of targets. Thus
it can generate more particles than actual targets, and its ability
to capture all targets depends on good parameter choices which
are described in [8]. However, it is admitted in [8] that there
is no theoretical guarantee that the ClusterTrack will catch all
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the targets. Furthermore, ClusterTrack can only localize all
targets after multiple iterations which is operating in a batch
mode where measurements from future times are influencing
the estimated target locations at earlier points in time.

In our simulations for the ClusterTrack method, we slightly
modify code provided by the authors of [8] to accommodate
for a test scenario since the original ClusterTrack assumed
the number of targets in the scene remains constant. This
first test reproduces the scenario in [8]: sensors are uniformly
distributed in 1-D), the separation between consecutive sensors
is equal to the sensing range, so that the coverage area for
the adjacent sensors has 50 percent overlap. In this case, the
number of sensors is 50, and the disc sensing range is 30, and
the observation range is 1250. Fig. 15 shows that estimated
target locations from the PHD filter and the ClusterTrack traces
after one and two iterations. The PHD and ClusterTrack (after
two iterations) are able to capture all targets. However, when
ClusterTrack is behaving as a filter (and not a smoother) for
the first iteration, it is unable to capture all the targets.

In the second comparison, the number of targets changes
during the surveillance interval. Figure 16 shows that the PHD
and ClusterTrack (after four iterations) are able to capture all
the targets. Again, ClusterTrack fails to localize all the tracks
after the first iteration. After multiple intervals, the traces
in ClusterTrack will jump whenever targets are born or die.
ClusterTrack forces these jumps as an artifact of its assumption
that the number of targets is constant.

Overall, ClusterTrack is an effective multiple target tracker
after a number of iterations, and the localization ability of the
PHD and ClusterTrack appear to be comparable. However,
the PHD can capture all targets as a track filter, while
ClusterTrack requires multiple iterations working in a track
smoothing mode to capture the targets. On the other hand,
ClusterTrack does provide traces of the tracks, and the PHD
only provides estimates of the target locations at each snapshot
interval. Finally the method to build and refine particles in
ClusterTrack assumes the disc model, and it is not clear how
to modify ClusterTrack to consider the probabilistic sensing
model. When incorporating the probabilistic sensing models,
the PHD provides an accurate estimate of the number of targets
at each snapshot interval when the probabilistic model actually
represents the behavior of the sensors. ClusterTrack cannot
provide for such an estimate.

D. Discussion

The simulations demonstrate that effectiveness of the pro-
posed PHD method for multitarget tracking using proximity
sensors. The PHD method appears to be more robust when
employing the probabilistic sensing model than the disc model.
Furthermore, the CPF filter can break down when employing
the disc model. It appears that the weight update using
probabilistic model is better than using the disc model because
the probabilistic model accounts for the imperfect multiobject
particles with non-zero weights. Here the imperfect multi-
object particles refer to ones where some subparticles are
good but the others are far from any ground truth target.
Using an example in Fig. 17, we show the disadvantages
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Fig. 15. For no target birth/death cases, (a). estimated target positions
using PHD vs. time (b)-(c). at each iteration of ClusterTrack, positions of
cluster heads vs. time, where true target tracks are in solid lines, and dots or
dashed lines denote the estimates using either PHD or ClusterTrack method,
respectively
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the number of targets versus time

of assuming the disc model in the measurement update for
the filters. Following the measurement update, it is desirable
for the weights associated to imperfect particles to be greater
than zero since some portion of its subparticles are good.
However in the disc model, for the weights to be nonzero, all
subparticles associated to the multiobject have to lie beyond
the sensing radius of any non-detecting sensor, and there must
be at least one subparticle within the detection range of all
detecting sensors (see (5) and (13)). For example, among
the five sensors in Fig. 17, three sensors centered in the
shaded circles report target detections. Suppose there are three
multiobject particles, each denoted by the stars, pluses, and
diamonds, respectively. The weights for the star, plus and
diamond multitargets are O, 1, and 0, respectively, when using
(5) and (13). The weight for the star particles is zero because
there is a subparticle that lies within sensing range of non-

detecting Sensor 4. The weight for the diamond particles is
also zero because there is no subparticle that lies within the
sensing range of sensor 3. When using the bounding box to
generate innovative particles, there is a high chance that none
have positive weights for the disc model when the targets are
far apart.

On the contrary, the weights generated by the probabilis-
tic model for the imperfect star and diamond particles are
nonzero. Overall, the probabilistic model does a better job
of rating the overall goodness of a particle as the weight
is not binary. Furthermore, the probabilistic model does not
prune particles that contain good subparticles. These good
subparticles can lead to good solutions, and the crossover
feature of the PHD allows good subparticles from otherwise
weak particles to combine into strong particles.

When the number of targets grows to three or more, the



IEEE TRANSACTION ON, VOL. 1, NO. 1, 2012

500

250

b

-250 +

-500
-500 -250 0

METERS

250 500

Fig. 17. TIllustration of weight updates using the disc model where sen-
sors{1,2,3} report d! = 1 and sensors{4,5} report d} = 0. The weights for
the star, plus and diamond multitargets are 0, 1, and O, respectively, when
using the disc model, i.e., (5) and (13)

localization accuracy of the PHD degrades for all four cases.
However, for Case 1 (matching probabilistic model), the PHD
is able to accurately track the number of targets. It is interest-
ing to note that for Case 4, the filter underestimates the number
of targets for Scenarios C and D once the number of targets
grows to three or more (see Figure 11). Since the PHD filter
is employing the probabilistic model, the underestimation is
caused by targets that are too close to each other to create large
enough clusters of detections indicative of the true number of
targets. As a result, the particles of the PHD will coalesce
into a smaller number of clusters than targets for any of the
four cases, and this will create problems for the k-means
algorithm to determine which PHD particles should belong to
which targets. Overall, the centroid for the partitions may not
be reflective of the ground truth targets. Future work should
investigate whether alternative clustering method [29], [30],
[31] can improve the localization.

In all simulations in Section IV-A, the clairvoyant PHD
does not clearly outperform the PHD. This was unexpected
given that the clairvoyant filter always forces n(*) in Step 3
of the PHD (see Figure 2) to equal the ground truth number
of targets. The clairvoyant PHD does slightly outperform
the PHD for the matching probabilistic sensing case for all
scenarios except Scenario D, when four or more targets enter
the scene. Inspection of Figure 11 indicates that the PHD
slightly overestimates the number of targets for that case,
which means more of the P* PHD particles after collapsing
the multiobject density (see (23)) represent good solutions
for the PHD filter than for the clairvoyant PHD filter. This
larger diversity of good PHD particles might translate to
better localization. In fact, forcing n(®) to equal the ground
truth target number does constrain the search for good mul-
tiobject particles with high likelihood, i.e., good hypotheses
that explain the sensor measurements, and may offer little to
no advantages when the sensor/target configuration is such
that the target count is ambiguous. Thus, the PHD filter can
outperform the clairvoyant PHD filter in cases where the disc
model is considered.

Finally, the capability for the PHD methods to estimate
the number of targets for Case 1 is not boundless. As more
targets enter in the scene a higher percentage of sensors
will report detections. For the case of five targets (using the
probabilistic sensing model), thirty percent of the sensors
generate detections. When the number of targets grows to
twenty, all hundred sensors will normally return detections.
In this extreme case, the ability to localize the targets com-
pletely disappears as any configuration of twenty targets will
be sensed by all sensors. To accurately localize targets, a
certain number of non-reporting sensors are required. Perhaps,
this issue also affects the poorer localization performance in
Scenarios C and D when targets move too close to each other.
The resolution problem does not appear for two or less targets
as seen in these simulations and in the results of [21] that
specifically investigated the resolution issue. Future work can
investigate the resolution limits of the PHD filter for three or
more targets.

V. CONCLUSIONS

This work documents our investigation of multiple target
tracking filters in proximity sensor networks. To this end, we
developed a novel formulation of the PHD filter for proximity
sensors. We compared the PHD against two clairvoyant filters
that assume the number of targets is known a priori. For
measuring the localization errors, we considered a measure
that attempts to separate out the effects of cardinality errors.
The simulations show the advantages of the crossover feature
in the PHD.

Two possible measurement models were considered: the
disc and probabilistic, so that two model matching cases
and two model mismatching cases were considered. While
the disc model has wide appeal, the probabilistic model
better represents the phenomenology that dictates how sensors
respond to target signals. The simulations demonstrate that the
PHD filter would be unable to accurately estimate the number
of targets if the disc model was assumed in the measurement
update. This is the case because the hypothesis that explains
the pattern of detection reports is not unique. On the other
hand, the PHD is accurate when using the probabilistic model
in the measurement update because of the uniqueness of the
best hypothesis to explain the pattern of detection reports.

The unique hypothesis emerges because it is assumed that
the radiating power of each target is a fixed and known
quantity. In reality, one would expect that this power fluctuates
from target to target. If these fluctuations are unbounded, the
probabilistic model becomes completely ambiguous, and it
would be impossible for the PHD filter to accurately estimate
the number of objects in the scene. However, we expect that
these fluctuations are bounded. Future work will investigate
how allowing for bounded spread of target power levels
will affect the performance of the PHD filter. Other future
work will investigate better dynamical models to improve the
tracking performance including target motion and birth/death
models, and other cluster methods for closely spaced targets.

Finally, the new PHD filter in this paper uses a profoundly
different measurement model than the traditional PHD filter.
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When the sensor measurements are statistically independent
conditioned on the target hypothesis as in this paper, the
multisensor version of the PHD is straightforward. However,
for the traditional PHD filter, the “exact” multisensor version is
very cumbersome to implement [32]. Usually, approximations
are incorporated in the multisensor implementation of the
traditional PHD. These approximations are necessary due
to the constraints that a measurement corresponds either to
one unique target or clutter. Actually, the measurements are
usually derived from raw signals through signal processing,
e.g., direction of arrival estimation. As an alternative, the
new PHD method could easily be modified to consider the
likelihood of raw signals given the target hypotheses. The new
PHD method does suffer from approximations in the particle
implementation of the multiobject target density. On the other
hand, approximations of the PHD for sensor fusion also lead to
performance loss. Future work can investigate whether the new
PHD method operating over raw signals from multiple sensors
has utility compared to multiple sensor implementation of the
traditional PHD method.
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